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H I G H L I G H T S

• An ensemble framework is proposed to forecast mean daily household energy usage.

• The methodology shows the use of the ensemble learner in smart energy systems.

• The utilized diversity parameters and robust integration produce a unique learner.

• The proposed ensemble framework is applied to a case study in France.

• Improved day-ahead energy usage forecasts are shown when compared to other models.
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A B S T R A C T

Smart energy management mandates a more decentralized energy infrastructure, entailing energy consumption
information on a local level. Household-based energy consumption trends are becoming important to achieve
reliable energy management for such local power systems. However, predicting energy consumption on a
household level poses several challenges on technical and practical levels. The literature lacks studies addressing
prediction of energy consumption on an individual household level. In order to provide a feasible solution, this
paper presents a framework for predicting the average daily energy consumption of individual households. An
ensemble method, utilizing information diversity, is proposed to predict the day-ahead average energy con-
sumption. In order to further improve the generalization ability, a robust regression component is proposed in
the ensemble integration. The use of such robust combiner has become possible due to the diversity parameters
provided in the ensemble architecture. The proposed approach is applied to a case study in France. The results
show significant improvement in the generalization ability as well as alleviation of several unstable-prediction
problems, existing in other models. The results also provide insights on the ability of the suggested ensemble
model to produce improved prediction performance with limited data, showing the validity of the ensemble
learning identity in the proposed model. We demonstrate the conceptual benefit of ensemble learning, em-
phasizing on the requirement of diversity within datasets, given to sub-ensembles, rather than the common
misconception of data availability requirement for improved prediction.

1. Introduction and motivation

The demand for energy is continuously rising and, consequently,
leading to unsustainable exhaustion of the nonrenewable energy re-
sources. The increase in urbanization have led to an increase in elec-
tricity consumption in the last decades [1–3]. Many countries are
continuously moving toward decentralized power systems; therefore,
the use of distributed generation of electrical energy instead of the
traditional centralized system is becoming popular [4–8]. To face the
growing electricity demand and reinforce the stability of this new

energy infrastructure, a more decentralized microgrid represents the
key tool to improve the energy demand and supply management in the
smart grid [9,10]. This is achieved via utilizing information about
electricity consumption, transmission configuration and advanced
technology for harvesting renewable energy on a finer demand/supply
scale. These systems are expected to improve the economy and deliver
sustainable solutions for energy production [11,12].

Furthermore, power balance is one of the major research frontiers in
decentralized energy systems; the high penetration levels of renewables
prompt additional demand–supply variability which may lead to
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serious problems in the network [13,14]. Also, the relatively small scale
of new decentralized energy systems highlights the importance of
predicting the demand projections, which are not similar to the demand
projections in the main grid and impose additional variability in the
net-load of the system [9,15]. Hence, short-term load forecasting at the
microgrid level is one of the critical steps in smart energy management
applications to sustain the power balance through proper utilization of
energy storage and distributed generation units [3,16,17]. Day-ahead
forecasting of aggregated electricity consumption has been widely
studied in the literature; however, forecasting energy consumption at
the customer level, or smaller aggregation level, is much less studied
[13,18]. The recent deployment of smart meters helps in motivating
new studies on forecasting energy consumption at the consumer level
[11,13,19]. On the other hand, forecasting energy consumption at
smaller aggregation level, down to a single-consumer level, poses sev-
eral challenges. Small aggregated load curves are nonlinear and het-
eroscedastic time series [13,20,21]. The aggregation or smoothing ef-
fect is reduced and uncertainty, as a result, increases as the sample size
of aggregated customers gets smaller. This is one of the major issues
leading to the different challenges in household-based energy con-
sumption forecasting. The studies in [22–24] discuss the importance
and the difficulties in forecasting the energy consumption at the
household level.

Further, the behavior of the household energy consumption time
series becomes localized by the consumer behavior. Additional in-
formation on the household other than energy consumption, such as
household size, income, appliance inventory, and usage information
can be used to further improve prediction models. Obtaining this in-
formation is very difficult and poses several user privacy challenges. For

example, Tso and Yau [25] achieve improved household demand
forecasts by including information on available appliances and their
usage in each household. The authors describe the different challenges
in attaining such information via surveying the public. As a result, in-
novating new models that can overcome prediction issues with the
limited-information challenge is indeed one of the current research
objectives in this field. In short-term forecasting of individual house-
holds’ energy consumption, ensemble learning can bring feasible and
practical solutions to the challenges discussed earlier. Ensemble lear-
ners are expected to nullify bias-in-forecasts, stemming from the limited
features available to explain the short-term household electricity usage.
However, to the best of our knowledge, there has not been much work
done on utilizing ensemble learning frameworks for the problem at-
hand.

This work focuses on the specific problem of practical short-term
forecasting of energy consumption at the household level. More speci-
fically, we present a proper ensemble-based machine learning frame-
work for day-ahead forecasting of energy consumption at the household
level. The study emphasizes on the successful utilization of diversity-in-
learning provided by the two-stage resampling technique in the pre-
sented ensemble model. This ensemble framework allows for utilizing
robust linear combiners, as such combiners are not used before due to
the unguided overfitting behavior of the ensemble model in the training
stage. The results of the study focus on the ability of the presented
ensemble to produce improved estimates while having limited amount
of information about the household energy usage history (in terms of
variables and observations available for the training).

This paper is organized as follows; Section 2 presents a concise
background on common techniques for forecasting of energy

Nomenclature

ANFIS adaptive neuro fuzzy inference system
ANN artificial neural network
BANN ANN based bagging ensemble model
DT decision tree
EANN proposed ensemble framework
KF kalman filter
MAD median absolute deviation
MAPE mean absolute percentage error
MDEC mean daily electricity consumption

MLP multi-layer perceptron
MLR multiple linear regression
OLS ordinary least squares
RBF radial basis functions
rBias relative bias error
RF-MLR robust fitting based MLR
RMSE root mean square error
rRMSE relative RMSE
SANN single ANN model
SCG scaled conjugate gradient
SVM support vector machines

Table 1
General characteristics of classical, single and ensemble machine learning models (not only for energy applications).

Broad Group Attributes and advantages Weaknesses and disadvantages

Non-Machine Learning
Methods

– Common and well established in the wide literature
– Perform well in forecasting aggregated load time series at different
temporal resolutions

– Provide statistical significance of prediction
– Usually quantify uncertainty in obtained predictions
– Fast-Implementation to any case study

– Poor performance in forecasting short-term complex time series
– Dependence of various assumptions which may be very unreliable
– Limited ability to utilize additional variables in the prediction model
– Sensitivity to correlations within explanatories
– Curse of dimensionality

Single Machine Learning
Methods

– Do not require assumptions on the nature of variables
– Increasingly accepted methods for various applications in the
literature

– More flexible methods that can fit better to complex time series
– Can accommodate different variables in time series forecasting
– Often provide better generalization ability than classical methods

– May be computationally more expensive than classical methods
– In time series forecasting, mostly used for curve-fitting objectives rather
than statistical interoperability of predictions

– Fitting-behavior of many methods are still poorly understood
– Curse of dimensionality
– Inherent instability in the learning of a case study, even with similar
training configurations

Ensemble Machine
Learning Methods

– Do not require assumptions on the nature of variables
– Very flexible methods that can provide the best fitting approaches
– Enjoy far more stable performance than single modeling frameworks
– Can provide information on uncertainty
– Can significantly reduce the effect of dimensionality; high
dimensional systems are handled better without significant impact
on performance

– Relatively new learning frameworks
– Learning in-series may create computationally expensive methods
– Mostly available for classification problems rather than regression
– Diversity concept, contribution to its generalization ability, is not
usually tackled in an explicit manner in many of the common ensemble
models

– Generalized learning frameworks require careful consideration when
applied to a definite field and a certain case study

M.H. Alobaidi et al. Applied Energy 212 (2018) 997–1012

998



consumption as well as the significance of ensemble learning in such
case studies. In Section 3, we introduce the methodology of the pro-
posed ensemble. Section 4 is devoted to an application of our method to
mean daily household energy forecasting. The case study in this paper
and the comparison studies are given in this section as well. The dis-
cussion of the results is provided in Section 5, and concluding remarks
are given in Section 6.

2. Background and literature review

A summary of the methods commonly used in the literature for
forecasting energy consumption is presented. Table 1 provides an
overview of the advantages and disadvantages of the different cate-
gories of models discussed in this section. Common techniques for en-
ergy consumption forecasting include time series models [26], Ex-
ponential Smoothing [27], Linear Regression [28], Generalized
Additive Models [29,30], and Functional Data Analysis [13]. Such
classical methods, also referred to as non-machine learning methods,
have been comprehensively studied in the literature, and a useful
overview of their common attributes can be found in [31]. The pre-
viously mentioned techniques have been demonstrated on aggregated
demand studies. On the other hand, such techniques are expected to
yield unsatisfactory results at the household level due to the challenges

in the individual household energy usage patterns [32,33]. Instead, the
limited literature on forecasting household-level (not aggregated) en-
ergy consumption suggests machine learning techniques.

2.1. Machine learning in forecasting energy consumption

Examples of machine learning models are Support Vector Machines
(SVMs), Adaptive Neuro-Fuzzy Inference Systems (ANFISs), Kalman
Filters (KFs), Decision Trees (DTs), Radial Basis Functions (RBFs) and
Artificial Neural Networks (ANNs) [3,34–37]. The literature is abun-
dant with research studies stating that machine learning models sig-
nificantly outperform the classical statistical methods [38,39]. For ex-
ample, Pritzsche [40] compares machine learning models to classical
ones and shows that the former can significantly improve forecasting
accuracy in time series. In the specific literature of forecasting elec-
tricity consumption, the work in [25] utilizes DTs in predicting energy
consumption levels. The use of KF is proposed in [41]. It is critical to
note that the two previous studies use a large dataset of consumers, not
individuals, but refer to the work as household energy forecasting. In
addition, the earlier study relies on household appliance information,
which is a significantly impractical requirement to build prediction
models. In [36], the authors demonstrate a forecasting approach using
SVM applied on a multi-family residential building. Also, SVMs and

Fig. 1. Typical ensemble learning frameworks
specific to homogeneous ensemble models; (a) In-
Series Learning, native to Boosting ensembles; (b)
Parallel Learning, as in Bagging ensembles.
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ANNs are adopted for household energy forecasting in [42]. However,
the study focuses on determining the optimum aggregation size of
households rather than energy consumption forecasts. A more recent
study by Xia et al. [43] develops wavelet based hybrid ANNs in elec-
trical power system forecasting, which can be applied to forecast
electricity price or consumption. The results of the study show a sig-
nificant improvement in the generalization ability of this model when
used to forecast power system states. Nevertheless, wavelet based ma-
chine learning techniques are expected to provide a deteriorated per-
formance when individual-human behavior becomes a driving variable
to the power system. In other word, decomposing the individual
household electricity consumption time series is expected to provide
misleading patterns that are not useful for daily load forecasting.

The day-ahead average energy consumption forecasts of individual
households are important for a wide variety of real life applications. For
example, household energy forecasts on a daily basis can support
wholesale electricity market bidding, where the load serving entity may
submit a fixed Demand Response offer curve that is constructed from
knowledge of the day-ahead average energy consumption of individual
smart homes [44]. In addition, day-ahead average energy consumption
can benefit the energy storage of relatively small and islanded power
systems, down to a household level [45]. Also, this forecasting problem
has recently been targeted in estimating greenhouse gas emissions and
short-term carbon footprints of individual households [46].

Perhaps the alluring nature of machine learning is also considered
one of its major drawbacks. More precisely, machine learning models
are instable learners; optimization of a certain model can yield different
optimum configurations, even with the same training and validation
environment. In the case of ANNs, this instability manifests in the
random initiation of the hidden neuron’s weights, required to start the
training stage, which leads to different local optimum solutions for the
model. This suggests that such instability can negatively affect the
generalization ability of machine learning models if certain inferior
conditions exist in the variables considered or in the data available for
training and validation. To this extent, ensemble learning is a recent
advancement to common machine learning techniques, and has been
suggested over a wide spectrum of applications in the literature
[47–50].

2.2. Common ensemble models in the general literature

The main advantages of ensemble models, compared to single
models, are depicted in their improved generalization ability and
flexible functional mapping between the system’s variables [51,52].
Fig. 1 depicts the common architecture of ensemble models, in a
homogeneous-learning setting where the sub-ensemble processes are
similar. Hybrid ensembles, also called Nonhomogeneous or Hetero-
gonous ensembles, comprise a combination of different models. En-
semble learning commonly comprises three stages [34] which are re-
sampling, sub-model generation and pruning, and ensemble
integration. Resampling, which deals with generating a number of data
subsets from the original dataset, is often the main character behind a
key-ensemble model, as described later. Sub-model generation defines
the process of choosing a number of appropriate regression models for
the system at-hand. Pruning the sub-models (or ensemble members)
determines the optimum ensemble configurations and the sub-models’
structures. Lastly, ensemble integration is the specific technique that
transforms or selects estimates coming from the members, creating the
ensemble estimate.

The most common ensemble learning frameworks throughout the
applied science literature are Bagging [53], Generalized Stacking [54]
and Boosting [55]. These ensembles can be used to in a Homogeneous
as well as Nonhomogeneous (Hybrid) setting. Bagging ensembles, for
example, employ Bootstrap resampling to generate the subsets and use
a mean combiner to create the ensemble estimates. A wide variety of
machine learners can be used as ensemble members, whereas this is a

common feature to all ensemble models rather than Bagging. Stacked
Generalization (or Stacking) is a two-level learner, where resampling
and model generation and training are done as a first level training
stage in the ensemble process. The second level training stage is the
generation of the ensemble integration, which is a weighted sum of the
members’ estimates.

While Bagging and Stacking are viewed as ensembles with parallel
learning framework (i.e. individual members can be trained in-
dependent from each other), Boosting is an in-series ensemble that
creates members, in a receding horizon, based on the performance of
the previous members in predicting all the observations in the training
set. The first member will take in the observations of the original
sample set as observations with the same probability of occurrence, and
the observations with poor estimates will prompt an informed change in
the whole sample to shift the focus of training toward such observations
in succeeding ensemble members. For more information about en-
semble learners, a survey of common ensemble techniques in the ma-
chine learning literature can be found in [48,56].

The main advantages of ensemble models, compared to single
models, are depicted in their improved generalization ability and
flexible functional mapping between the system’s variables [51]. Fig. 1
depicts the common architecture of ensemble models, in a homo-
geneous-learning setting. Ensemble learning commonly comprises three
stages [34] which are resampling, sub-model generation and pruning,
and ensemble integration. Resampling, which deals with generating a
number of data subsets from the original dataset, is often the main
character behind a key-ensemble model, as described later. Sub-model
generation defines the process of choosing a number of appropriate
regression models for the system at-hand. Pruning the sub-models (or
ensemble members) determines the optimum ensemble configurations
and the sub-model’s structure. Lastly, ensemble integration is the spe-
cific technique that transforms or selects estimates coming from the
members, creating the ensemble estimate.

2.3. Diversity concept

The main attribute of ensemble learning, in which the improved
generalization ability is manifested, is theorized to be the diversity-in-
learning phenomenon. Diversity is simply the amount of disagreement
between the estimates of the sub-models [57–59]. One major source of
ensemble diversity is the nature of the resamples in the training stage.
When the resamples are created for the members’ training, the relative
uniqueness of the information available in each subset prompts the
members to capture different patterns along the system dynamics.
While infrequently highlighted in the literature, the concept of diversity
is not directly tackled in the most employed ensemble methods and is
commonly of-interest for classification-based studies rather than the
regression [60,61].

In regression settings, the realization of diversity effects on the en-
semble generalization ability has been implied by Krogh and Vedelsby
[62], as the variance in estimates by the ensemble members. The au-
thors also suggest that an ensemble whose architecture successfully
increases ensemble diversity, while maintaining the average error of the
sub-models, should have an improved generalization ability, in terms of
mean squared error of the ensemble estimates. Ueda and Nakano [63]
extend the previous work to derive an explicit description to ensemble
diversity, manifested in the bias-variance-covariance decomposition of
a model’s expected performance. This notion is the main reason behind
the common preview “the group is better than the single expert” and
becomes an identity, defining a proper ensemble. More recently, Brown
et al. [64] develop a diversity-utilizing ensemble learning framework,
which is inspired from an ANN learning technique [65]. The authors
show that an error function for each individual can be derived by taking
the ensemble integration stage into account, enabling explicit optimi-
zation of ensemble diversity. The authors also show that resultant en-
semble models provide improved generalization over many case studies
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when compared with common ensemble learners, such as Bagging.
In this work, a robust ensemble learning framework is presented.

One of the major characteristics of the presented model is the direct
utilization of ensemble diversity investigation in the training process.
This diversity is created from the first ensemble learning component,
the resampling technique. It is expected that creating diverse resamples
will prompt the whole model to become diverse. The novelty in the
presented model is its ability to measure diversity, via introducing in-
formation mixture parameters, without affecting the random learning
character of the training stage. In addition, the suggested ensemble can
utilize linear combiner as ensemble combiner, unlike common en-
semble learners. This enables the addition of a robust combiner, which
significantly contribute to the prediction accuracy of the problem at-
hand.

Furthermore, ANNs are selected in this study as sub-ensembles, or
ensemble members, due to their resiliency in generating diverse reali-
zations, facilitating the resampling plan to create the expected diversity
in the ensemble learner [49,66]. The bias-variance-covariance compo-
sition of ANN-based ensemble models have been studied in the litera-
ture. They show many benefits of ANNs as ensemble members
[38,58,62]. More recent, the work by Mendes-Moreira et al. [48] pro-
vides a survey on ensemble learning from diversity perspective and
concludes that the most successful ensembles are those developed for
unstable learners that are relatively sensitive to changes in the training
set, namely Decision Trees and ANNs. The next section provides a de-
tailed overview of the proposed model.

3. Methodology

In general, the three main stages that make up ensemble learning
are: resampling, sub-ensemble generation and training, and ensemble
integration. A certain ensemble learning framework utilizes a method
in one or more of these three stages, unique to that ensemble. In this
work, an ensemble-based ANN framework with minute-controlled re-
sampling technique and robust integration is proposed. In addition, an
ensemble model is constructed using the proposed framework to esti-
mate the day-ahead average energy consumption for individual
households. Fig. 2 summarizes the ensemble learning process presented

in this work. From a machine learning perspective, the novelty in the
presented ensemble learning framework exists within the first and third
ensemble learning stages; the developed two-stage resampling tech-
nique utilizing diversity within the ensemble members allow explicit
diversity-control within the resamples and, consequently, the sub-en-
semble models. Also, the ability of the presented ensemble framework
to exploit robust linear combiners for the ensemble integration stage is
unique, compared to common ensemble frameworks.

In this section, the description of the ensemble learning metho-
dology follows a systematic process that takes into consideration the
ensemble identity, namely resampling, model generation and pruning,
and sub-ensemble integration. Also, the methodology is designed to
describe the utilized techniques in resampling and ensemble integration
because the proposed ensemble model is unique in these two stages.

3.1. The Two-stage resampling plan

The resampling plan consists of a two-stage diversity controlled
random sampling procedure. In the first stage, the dataset is divided
into k resamples, where k is the size of the ensemble model (i.e. number
of sub-models in the ensemble). These resamples are referred to as first-
stage resamples, and are described as follows:

= − = − ⩽ ⩽ −n N n
k

N m
k

k N n(1 ) , 1 ( ),blocked c
blocked1 (1)

where n1 is the first-stage subsample size, and nblocked is the number of
the blocked observations from the training sample, N is the size of the
sample set available for the training, and mc is the mixture ratio used to
determine the amount of blocked information which will be utilized in
the training of the linear ensemble combiner.

Typically, mc can vary between 10% and 30%, depending on the
availability of training data, the ensemble size, and the nature of the
ensemble combiner used. A simple random sampling without replace-
ment is used to pick out the samples for the purpose of blocking them
from the members’ training. Although the resamples have the same size,
each subsample will have different observations from each other; no
observation can be found in more than one first-stage subsample.

The second-stage resamples are then generated by random, but

Fig. 2. Comprehensive methodology to the ensemble learning process within a potential application. The dashed arrows indicate processes that are out of the scope of the current paper.
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controlled, information exchange between all the first-stage resamples.
Using a parameter that controls the amount of information mixture in
each resample, a certain number of observations is given from one re-
sample to another. In this work, the mixture-control parameter is uti-
lized in the generation of the second-stage resamples as follows:

∑= +
=
≠

×n n
j
j i

m n
1

,
k

e2 1 1i i j

(2)

where n2i is the size of the ith second-stage resample, me is the in-
formation-mixture ratio, n1j and n1i are the size of the jth and of the ith

first-stage subsample, respectively =i j k( , 1,2,3,.., ). It is worth noting
that although all first-stage and consequent second-stage resamples
have the same size, the subscripts i and j are added in order to em-
phasize the fact that the first-stage resamples hold different informa-
tion.

The mixture ratio, me, should vary between 0 and 1. The value 0
means that the second-stage resamples are the same as the first-stage
resamples (no information-mixture). The value 1 means that all the
second-stage resamples have the same observations in the original da-
taset (and have the same size). Fig. 3 presents the relationship between
the information-mixture and the ratio of the second-stage resamples to
the net sample set. It is expected that the optimum resamples (i.e.
prompts the best ensemble learning performance) lie somewhere be-
tween the two values. In addition, the zero-mixture downgrades di-
versity-in-learning, and the saturation of the second-stage resamples
( =m 1e ) implies that diversity will only arise from the individual
member models rather than the training resamples. Consequently, the
mixture ratio, for all the second-stage resamples, is defined as:

= ⩽ ⩽m
n

n
n n, 0 ,e

shared
shared

1
1

j

j
j j

(3)

where nsharedj is the number of observations shared by the jth first-stage
resample, and n1j is the size of the same resample. Notice that Eq. (4)
states that the jth homogeneity ratio, me, will have a value between 0
and 1, bounding the amount of information shared by the jth first-stage
resample in order not to exceed its size (preventing redundancy in
shared information). In addition to the diversity reasoning behind the
mixture ratio, Eq. (4) distinguishes the proposed resampling technique
from that suggested in the common Bagging ensembles. The informa-
tion-mixture ratio me can be optimized for a given case study by a va-
lidation plan, where a set of mixture ratio values is defined and used to
generate the resamples. The effect of the resamples on the overall en-
semble performance is then investigated for each value, discussed in the
following section.

3.2. Sub-ensemble models

After the resamples are prepared, sub-ensemble models are created
and trained using the resamples. The choice of the ensemble members
(sub-ensemble members) depends on the type of the problem, available
variables as well as the dataset itself. In this paper, the ensemble
members used are ANN. Multi-Layer Perceptron (MLP) Feed-Forward
ANN is well established in the literature and detailed information about
this model can be found in [34,66]. Hence, discussing MLP-based ANNs
is not necessary. However, optimum design of ANN-based ensemble
architecture (parameter selection) is discussed in the next section. The
Scaled Conjugate Gradient (SCG) is used as the training algorithm for
the ANNs [67]. SCG has been shown to provide satisfactory learning
performance to ANNs with relatively complex inputs [68,69].

The ensemble size, k, plays a major role in the proposed resampling
plan, as it determines the size of the first-stage resamples and the size of
the shared information, along with the mixture ratios in the second-
stage resamples. On the other hand, determining the optimum number
of sub-models, i.e. the ensemble size k, is expected to be time

consuming and very complex. When the dataset is relatively large,
fixing the ensemble size to reasonable value, with respect to the
available training information, can be considered in order to reduce the
computation cost. In the case of a limited dataset, it is recommended to
investigate the optimum ensemble size by running a validation check to
different ensemble models. The ensemble size should provide enough
training observations to successfully train the ensemble members with
resampled subsets, and at the same time allow generalization over the
whole target variable space. In this study, the ensemble size k is set to
equal 10, and the effect of different mixture ratio values is investigated
for optimum parameters’ selection, explained in the experimental setup
section.

3.3. Ensemble integration using a robust combiner

Ensemble integration is the last stage in ensemble modeling. In this
stage, estimates obtained from the ensemble members are combined to
produce the final ensemble estimate [70]. Unlike the available en-
semble models in the literature, the presented ensemble can utilize
Multiple Linear Regression (MLR) combiners as integration techniques.
This is allowed due to the controlled diversity in the ensemble mem-
bers, the training approach to the whole ensemble, and the introduction
of the parameter mc. The diverse resamples prompt the ensemble
members to have different optimum configurations, with localized
overfitting, i.e. each member overfits to its own resample. At this stage,
when MLR is used as an ensemble combiner, the training is carried out
using different information. This allows for MLR parameters to gen-
eralize over the behavior of the sub-ensemble estimates for unseen in-
formation, successfully utilizing it as a linear combiner.

The common MLR technique is utilizing Ordinary-Least-Squares
(OLS) algorithm to derive the solution of its parameters. The MLR
function maps the sub-model estimates, ̂yj i, , into the ensemble estimate,

̂ye i, , and is represented as:

̂ ̂∑= + ×
=

y B B y ,e i o
j

k

j j i,
1

,
(4)

where Bo and Bj’s are the unknown MLR coefficients that can be esti-
mated by using the OLS approach with all the sub-models’ estimates at
all the available observations in the training phase to the coefficients of
the MLR which can be obtained analytically [71–73].

The use of OLS-based MLR combiner is inspired by the idea of as-
sessing the performance of linear combiners in ensemble modeling.

Fig. 3. Relationship between the information-mixture parameter and the amount of in-
formation contained in the second-stage resamples.
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Such combiner uses fixed coefficients, derived from inferences about all
estimates coming from the sub-models, to combine all sub-models’ es-
timates into one ensemble estimate, for each observation. Nevertheless,
while the OLS estimates stem from a Gaussian distribution assumption
of the response data, outliers (and skewed response variables) can have
dramatic effects on the estimates. As a consequence, Robust Fitting
based MLR (RF-MLR) of the sub-models’ estimates should be considered
[74–78]. In this work, a RF-MLR technique is used as an ensemble in-
tegration method. This method produces robust coefficient estimates
for the MLR problem. The algorithm uses an iterative least-squares al-
gorithm with a bi-square as a re-weighing function. The robust fitting
technique requires a tuning constant as well as a weighing function, by
which a residual vector is iteratively computed and updated. Robust
regression overcomes the problem of non-normal distribution of errors.
Robust regression has been thoroughly studied and various robust MLR
techniques exist in the literature, but outside of ensemble learning
applications [75,79,80]. This technique computes the ensemble output

̂ye i, from the k sub-ensemble estimates ̂yj i, in the following form:
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where Brobusto and Brobustj are the robust regression bias and explanatory
variables’ coefficients, respectively. The robust regression coefficients
are obtained as the final solution using the iterative weighted least
square function of a robust multi-linear regression estimate of the
training data:
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where +rin 1 is the +t( 1)th iteration of weighted residual of the sub-
model estimates of the ith observation from the training data, and +wit 1

is the corresponding weight. yi is the ith observation from the training
data, and ̂yj i, is the estimate of the ith observation coming from the jth

sub-model.
The weighing function takes the form:
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The updating process of the weighted residuals takes the form:
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where rin is the residual for the ith observation from the previous
iteration, and ei is the leverage residual value for the ith observation
from an OLS-based MLR fit in the training process. Further, tune is a
tuning constant to control the robustness of the coefficient estimates, σn
is an estimate of the standard deviation of the error terms from the
previous iteration, and MADn is the median absolute deviation of the
previous iteration residuals from their median.

The tuning constant is set to be 4.685, which in return produces
coefficient estimates that are approximately 95% as statistically effi-
cient as the ordinary least-squares estimates [79], assuming that the
response variable corresponds to a normal distribution with no outliers.
Increasing the tuning constant will increase the influence of large re-
siduals. The value 0.6745 generally makes the estimates unbiased, given
the response variable has a normal distribution.

As an advantage over Stacked Generalization ensembles, which
utilizes non-negatives coefficients to combine sub-ensemble estimates,
RF-MLR introduces a bias correction parameter in addition to the
weighted sum of the sub-model estimates. This integration technique is
expected to be a good choice for many cases. Like any other linear
fitting tools, the amount of information dedicated to training is critical
to the generalization ability of that regression-based combiner tool.
This issue should be taken into consideration before deciding on
choosing the robust fitting tool.

4. Experimental setup

One of the main objectives of this work is to illustrate the benefits of
utilizing ensemble learning for short-term forecasting of energy con-
sumption on the household level. More precisely, improved forecasts of
day-ahead average energy consumption for individual households are
expected. The proper application of any method is an important factor
contributing to the success of such method. In this section, the con-
sidered case study is presented and the application of the presented
ensemble framework is then demonstrated.

4.1. Description of the data

Mean daily electricity consumption (MDEC) of a household in
France, observed from 24/09/1996 to 29/06/1999, is considered. In
addition, the temperature variation in France for the same period is
used because it is well known that it describes the daily, weekly and
seasonal behavior of the electricity consumption and therefore it is
relevant for localized load forecasting. The temperature data are of
hourly resolution; therefore, a preprocessing plan is adopted to re-
present the temperature for a given day via maximum linear-scaling
transformation of the hourly temperature data. The temperature ob-
servations over the considered study period are linearly scaled to be
transformed to values between 0 and 1. Then, for each day, the scaled
maximum hourly observation is used to represent the temperature of
that day. The considered temperature preprocessing plan preserves
sufficient correlation with the mean daily energy consumption. One of
the main challenges in this case study is the limited number of useful
features describing the variation of the household energy consumption.
Hence, the considered representation of the time series, as input vari-
ables, should alleviate this problem.

Since our target in this paper is day-ahead forecasting of energy
consumption, it is reasonable to utilize energy consumption observa-
tions of the previous days and transformed temperature variations as
explanatory variables. The descriptor statistics of energy consumption

Table 2
Descriptive statistics of the case study variables.

MDECs (KWh) Normalized Maximum Temperatures

Day Mean Std. Min Max Day Mean Std. Min Max

Saturday 1.908 1.031 0.324 4.988 Saturday 0.517 0.129 0.223 0.841
Sunday 1.804 0.996 0.335 4.276 Sunday 0.524 0.130 0.245 0.878
Monday 1.753 1.004 0.323 4.201 Monday 0.522 0.127 0.231 0.900
Tuesday 1.773 1.014 0.317 5.407 Tuesday 0.526 0.125 0.154 0.775
Wednesday 1.760 0.985 0.327 5.122 Wednesday 0.527 0.118 0.197 0.797
Thursday 1.711 0.935 0.344 4.805 Thursday 0.525 0.118 0.223 0.795
Friday 1.769 0.962 0.333 4.561 Friday 0.523 0.124 0.231 0.851
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throughout the week are summarized in Table 2. Also, Fig. 4 provides a
comprehensive view of the nature of the daily variations in energy
consumption and temperature variations. The figure shows negative
correlation between daily energy consumptions and scaled tempera-
tures. While seasonality is not explicitly treated in the learning frame-
work, it is expected to be captured in the increased MDEC and de-
creased temperature observations which will describe the projected
MDEC estimates. Hence, no data split, for further hierarchy in building
additional models that account for seasonality, is required.

In this work, a fixed input-variable configuration is selected. It is
worth mentioning that the specific number of features to be used com-
prises a different study (feature selection) for ensemble learning frame-
works and is beyond the scope of this paper. However, the used feature
configuration aligns with that commonly applied in the literature and is
justified due to the immediate relation between the target variable and
the used features, i.e. explanatory variables [38,81]. For a given day, the
MDEC is assumed to be explained by 8 variables, two temperature
variables and six MDEC variables. The temperature variables (re-
presented as the current and day-before maximum linearly-scaled tem-
peratures) are those for the day on which MDEC prediction is considered,
and the day before. The six MDEC variables are as follows; the MDEC
values of four previous days as well as the MDEC value of the same day,
but from two previous weeks. Hence, the six variables have different lags.
For example, the ensemble model dedicated to predict the MDEC of a
given Saturday will have the input variables as the temperature on the
same day, the temperature from the previous Friday, the MDECs from the
previous Tuesday to Friday, and the MDECs of two previous Saturdays.
Moreover, it is expected that energy profiles, on an individual level, may
depend on socio-economic variables. Examples of such variables are the
economic state of the country where the household is located, the urban/
suburban categorization of the household, changes in household income,
etc. On the other hand, it is expected that such variables categorize or
scale the expected usage profile among the different households on a
long-term basis. Therefore, since the modeling problem is on the
household level and in a short-term setting, the economic impact on the
targeted energy consumption trends may not be apparent.

4.2. Parameter selection and model comparison

The two-stage resampling ANN ensemble framework with robust
linear combiner is proposed to predict day-ahead household energy
consumption. The search process for the optimum uniform ANN con-
figuration, diversity (or information mixture) parameter and combiner-
information parameter are presented here. The information mixture
parameter, me, is used to investigate and eventually tune the informa-
tion diversity between the ensemble members. The combiner-informa-
tion parameter, mc, is used to identify sensitivity and performance of
linear combiners to available information for ANN training as well as
dedicated information to the combiner’s training. The optimum values
of these parameters, along with the ANN sub-models’ parameters, are
found by cross-validation studies. Seven ensemble models should be
selected to represent each day of the week, as the study will predict day-
ahead MDECs for Saturday through Friday. Hence, for each ensemble
model, a cross-validation study should be carried out.

Initially, the system inputs and outputs are pre-processed. The ob-
servations are normalized and then linearly scaled to meet the range-
requirement of the ANN and ensemble members [34]. As described in
the methodology, MLP-based feed-forward ANN models are used as the
sub-ensembles. All the ANNs will be initiated with one hidden layer
because the nature of the input variables does not require further
hidden layers. The hidden neurons are defined to utilize log-sigmoid
transfer functions. The optimum model configuration of the ANNs, in
terms of the number of hidden neurons in the hidden layer, is found via
a separate validation study. The number of hidden neurons, which
appears to be suitable for all or most of the days, is then selected for all
ensemble models. This allows for practically uniform and, therefore,

fast application to such case study. Complex-enough ANNs are needed
so that overfitting is achieved and the diversity within the ensemble is
manifested. Moreover, the validation study is carried out such that 40%
of the data is randomly selected and used to train a single model, while
the remaining 60% of the data is estimated to evaluate the testing
performance. This process is repeated ten times for each hidden neuron
configuration and each day of the week. The performance of the ten
versions of the same configuration is then averaged to reliably select the
best configuration over all the examined ensemble models. A step-by-
step summary of the ANN selection study is provided as follows:

(1) Retrieve the dataset for a given day of the week.
(2) Using random sampling without replacement, split the dataset into

testing set and training set, where the testing set comprises 40% of
the dataset and the training set has the remainder 60% of the da-
taset.

(3) Initiate the predefined ANN models, each with different number of
hidden neurons.

(4) Perform training and testing using the constructed training/testing
set.

(5) Repeat steps 2–4 for ten times, where the testing performance for
each ANN model is saved after each time.

(6) Retrieve the average testing performance of the ANN models and
select the ANN configuration with the best performance to re-
present that day (selected in step 1).

(7) Repeat steps 1–6 and retrieve the best ANN configuration results for
each day of the week.

(8) Using majority voting, select the ANN configuration that persists
throughout most of the days to set a uniform-optimal configuration
for the ensemble learning framework.

The above procedure indicates that once the optimum ANN con-
figuration for each day is selected, the number of hidden neurons is
found as a majority vote and becomes fixed for all the ensemble model
validation studies. This will enforce a homogeneous ensemble model
(the ANN individual members have the same structure), which will then
undergo performance evaluation for each me and mc case. In other
words, the next step is to find the optimum ensemble model, in terms of
mixture ratios. To do so, the two-stage resampling is carried out for a
different information-mixture me case, after reserving the dedicated
data for combiner training via the mc parameter. At this point, the
parallel nature of the ensemble framework will allow for each sub-en-
semble model to be trained in the same time, and the trained ensemble
combiner is used to produce the ensemble estimates for that particular
ensemble architecture. This process is repeated until the optimum en-
semble parameters are found.

Fig. 4. Daily energy consumption and normalized temperature variations from 24/09/
1996 to 20/06/1999.
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A Jackknife validation technique is used to evaluate the relative
performances of the proposed ensemble models [82]. For a given en-
semble model, the Jackknife validation is used to determine the op-
timum values of me and mc as follows. The MDEC value of an ob-
servation is temporarily removed from the database and is considered
as a testing observation. The ensemble members and the ensemble
combiners are trained using the data of the remaining observations.
Then, sub-ensemble estimates are obtained for the testing observation
using the calibrated ensemble model. Fig. 5 depicts the process of
creating the ensemble learner for any given day. The performance of
the proposed model is examined for all the seven days of the week,
where each day will have an ensemble model. Jackknife validation is
used for each simulation. These simulations investigate different com-
binations of homogeneity parameters to find the optimum ensemble
configuration. In the next section, the validation results are then pre-
sented and the performances of the optimal ensemble models are
compared to the benchmark studies. The following is a step-by-step
summary of the study experiment:

(1) Choose a potential ensemble configuration (type and size of en-
semble members, k, me, mc, and ensemble combiner) as described
above in this section;

(2) Keep one observation from the original sample as a test observa-
tion;

(3) Create k subsets using the proposed resampling technique and train
the ensemble models (members and combiner) using the generated
resamples;

(4) Estimate the test observation (create the ensemble estimate);
(5) Repeat steps 2–4 for all observations in a jackknife framework;
(6) Repeat steps 1–5 for every ensemble configuration;
(7) Compare the jackknife results for all ensemble configurations and

choose the optimum model.

4.3. Evaluation criteria

For each ensemble configuration (in terms of me and mc values), a
Jackknife validation is carried out. In each simulation, the Jackknife
process is repeated until we obtain the ensemble estimates for all
available observations. The estimates are then evaluated using

predefined evaluation criteria in order to select the optimum values for
these ensemble parameters. The reason behind using Jackknife vali-
dation in this work is due to its ability to evaluate the optimum para-
meters with relatively better independence of the model’s performance
from the available training information [83,84]. Hence, the final
models’ performance for the seven days are presented as jackknife va-
lidation results, for the chosen models.

Root mean square error (RMSE), bias (Bias), relative root mean
square error (rRMSE) relative bias (rBias) and mean absolute percen-
tage error (MAPE) are used as measures of model performance and
generalization ability over different ensemble parameter values, i.e.
mixture ratios. The rBias and rRMSE measures are obtained by nor-
malizing the error magnitude of each point by its own magnitude. The
MAPE measure is similar to rRMSE and rBias in the relative sense, yet it
provides a different outlook on the model’s generalization ability. The
considered performance criteria are defined as follows:
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where MDECdi is the ith observation of the d-day mean daily load
(d=Saturday, Sunday,…, Friday), M D ECdi

 is the ensemble model-
based estimation of MDECdi, and N is the number of observations.

The use of the above criteria is motivated due to the different in-
formation they provide. RMSE and Bias criteria are typical performance
measurements. MAPE is a common relative evaluation criterion among
energy forecasting studies. However, using this criterion as the only

Fig. 5. The utilized ensemble learning process, where the different components used in the initial modeling problem and in the update/forecasting setting are highlighted.
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relative measure of error to compare the performance of different
methods is not recommended. MAPE may favor models which con-
sistently produce underestimated forecasts. Consequently, rRMSE and
rBias complement the latter, as they provide information of the models’
performance distribution. Low rRMSE and rBias values indicate that the
target variable’s lower observations have relatively low prediction er-
rors, which is obviously the preferred target. In contrast, if these
measures are found high, it would imply that the low and high target
variable’s observations are poorly predicted. Hence, using the five error
measurement criteria is important.

5. Results and discussion

5.1. Baseline study

The forecasting error of a baseline model is shown in Table 3 for all
days of the week. A baseline model simply takes the previous year’s
consumption as the predicted value. This methodology has been uti-
lized in previous work as well as in real-life by utility companies to
contextualize model performance [36,85,86]. As for the baseline study,
the household’s daily energy consumption observations of the year
1997 are used to predict the next year’s daily energy consumption.
Furthermore, two procedures are used for the latter in order to provide
better investigation; in the first procedure, the days are matched by
their order in the year without initial matching of their order in the
week. For example, the first day in year 1998 is matched with the first
day in year 1997, and then its order in the week is identified. Following
on the same example, after matching the first day in 1998 with its
predecessor, we note that it is a Tuesday. Finally, the prediction errors
for this method are computed. The first procedure allows for all the
days in the year to be matched without sacrificing incomplete weeks in
the year.

In the second procedure, the weeks are matched by their order in
the year. For example, the first complete week in the year 1998 is
matched by the first complete week in 1997; this process is continued
until all the weeks in the test year are matched by their predecessors. By
using this procedure, all the days in the week are automatically mat-
ched by their predecessors in the previous year and a direct computa-
tion of the prediction errors can be performed. When using this pro-
cedure, the first and last incomplete weeks are removed to facilitate the
baseline’s matching process.

It is clear that such approach produces highly biased estimates and
imposes large errors. The errors are not only very high, but also as large
as the MDEC Summer values. This observation confirms that relying on
such approach, while accepted for aggregated energy consumption
profiles, does not provide reliable estimates for individual energy
consumption patterns. This can be justified by “the law of large
number,” where after a certain aggregation size, an individual pattern
does not significantly affect the aggregated pattern of interest [36].
Moreover, at smaller aggregation levels, it is shown that predicting
individual consumption patterns produce better generalization than
predicting the aggregate profile [16]. As a consequence, in decen-
tralized energy systems, forecasting individual energy consumption and
using relatively complex modeling methods is essential.

5.2. Proposed ensemble performance

The proposed robust ensemble framework is demonstrated in the
day-ahead forecasting of individual household energy consumption and
compared against single models and Bagging models, as described in
Section 4. For each day of the week, the models are created and trained.
The optimum ensemble parameters for each robust ensemble model are
then found using Jackknife simulations over different configurations.
Moreover, from the separate validation study, dedicated for selecting
the uniform ANN configuration, the optimum configuration of the en-
semble members is found such that individual ANNs comprise 1 hidden

layer and 16 hidden neurons. However, ANNs are inherently instable
learners and they provide different optimum configurations every time
a single-model validation study is carried out. Hence, the ensemble of
ANNs prompts the important benefit of shifting this validation issue
towards the ensemble parameters. In other words, the ensemble model
produces enhanced generalization ability, and reduces the dependency
of performance stability on the ANN sub-models’ individual general-
ization ability [58,87]. In the current study, tackling this problem is
important because individual household energy consumption is a re-
latively complex time series, which induces bigger challenges to single
ANNs [88]. This is verified in the results provided in this section.

The proposed robust ensemble framework, EANN, is applied on the
case study and compared against a single ANN model, SANN, and an
ANN-based Bagging ensemble model, BANN. Table 4 shows the results
of the optimum EANN configuration for each day of the week. The
results agree with the expected behavior as working days, except for
Friday. The results show that the household’s MDECs exhibit a more
predictable consumption behavior. In addition, the relatively limited
mixture of information required by working days suggests that the ro-
bust combiners need small amount of information, dedicated for their
training. The opposite is seen when the diversity is lowered (higher
information sharing), as mc increases for optimum ensembles describing
the weekend days.

This finding further extends the novelty in the proposed ensemble
learning framework, as it validates the ensemble learning identity of the
proposed method; ensemble learners with higher me are expected to be
coupled with combiners which are trained with higher mc. From
Table 4, it can be deduced that the ensemble model describing Wed-
nesday is found to be the “least complex day”, while Friday is found to
be the most complex day. From a household energy consumption
viewpoint, the results indicate that the household have fairly regular
energy consumption patterns during most of the business days and the
proposed model can successfully capture them in the optimum en-
semble configuration. On the other hand, energy consumption in Fri-
days is less regular because the household is expected to consume en-
ergy more actively at the end of this business day. Similarly, the
proposed ensemble model is able to inform this requirement by the
relatively higher information-mixture values for the optimum ensemble
model at that day.

Fig. 6 presents Jackknife results for the EANN models’ parameters,
performed for each day of the week. Different ensemble configurations
are investigated. The figure shows the Jackknife validation perfor-
mance with respect to changes in the homogeneity parameters. All
EANN models provide the best model performance with mixture level

Table 3
Results from the baseline approach utilizing two different matching procedures.

Day RMSE (Wh) Bias (Wh) rRMSE (%) rBias (%) MAPE (%)

Matching by day order in the year
Saturday 16604.9553 5476.5043 41.9352 9.1171 35.3899
Sunday 18068.6212 3738.6620 43.6786 9.0668 33.5021
Monday 17282.1621 6270.5751 41.4660 13.4870 32.0965
Tuesday 18848.2342 9019.5154 38.7687 19.0378 33.1553
Wednesday 17390.0661 5288.3485 33.4044 9.1637 26.0439
Thursday 15960.6825 4928.6506 38.6116 7.5580 30.1641
Friday 17271.1943 5613.3848 41.6465 10.8698 33.8656
Overall 17370.1576 5756.6904 40.0639 11.1799 32.0351

Matching by week order in the year
Saturday 15891.3994 6041.8763 39.5552 11.7022 33.6286
Sunday 15105.6683 6738.6625 35.5347 14.7011 28.0739
Monday 15124.4780 7371.1598 34.1216 17.7495 28.9715
Tuesday 16399.8998 8358.8231 34.3080 15.4531 28.7541
Wednesday 15674.2832 6953.0586 33.6084 13.8170 28.2473
Thursday 16899.5181 5343.4271 39.7344 10.0129 32.8762
Friday 17494.0647 5582.4879 40.2594 10.2682 32.6001
Overall 16105.6490 6627.0707 36.8352 13.3863 30.4502
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values less than unity. This result agrees with the ensemble learning
theory and clearly indicates that diversity-controlled ensembles are
better than data-saturated ones. In other words, the ensembles do not
require all the available training information in order to improve their
generalization ability, but rather diverse-enough models with limited
information-sharing among their sub-ensembles. In the proposed
model, this identity stems from a controlled information-exchange en-
vironment suited to the nature of the relationship and the available
intelligence on the system. In addition, each curve in Fig. 6 has a re-
latively convex shape; this observation suggests that optimal mixture
levels are expected to be found between 0 and 1. Each case study is
expected to have information-mixture parameter curves with global
optimum corresponding to a unique ensemble configuration.

After identifying the best EANN models, summarized in Table 4,
their performances are compared to SANN and BANN models. For re-
liability, all the optimum models are constructed repeatedly, where in
each time they are retrained and retested; the average performance is
reported. Table 5 presents the performance results of the proposed
ensemble, compared to SANN and BANN models. The proposed model
has significantly improved the estimation performance in terms of ab-
solute and relative errors. Considering RMSE, rRMSE, and MAPE, the
EANN models outperform the SANN and BANN models. BANN models’
performance is slightly better than SANN models’ performance, which

is expected from an ensemble model. Among all the day-wise EANN
models, EANN models for Wednesday and Thursday have the lowest
errors, while EANN model for Friday has the highest error in terms of
RMSE, rRMSE, and MAPE results. This important finding further vali-
dates the proposed ensemble learning framework’s interpretability.
Also, the three measurement criteria have consistent results among
themselves throughout the day-wise models. Where the best MAPE re-
sult is found (Wednesday), the second-best RMSE (with a close margin
from the lowest) and the best rRMSE are also located.

If we recall the results retrieved for optimum day-wise EANN
models’ information-mixture parameters, i.e. diversity requirement, the
generalization ability is found to be proportional to the amount of in-
formation-sharing. For example, the optimum EANN model configura-
tion for Wednesday requires the lowest amount of information-mixture
(highest induced diversity) and produces the second-lowest error
(second-highest accuracy). In a similar manner, the optimum EANN
model configuration for Friday requires the highest amount of in-
formation-mixture and has the highest error (lowest accuracy) among
all EANN models. It should be noted that most of the day-wise EANN
models exhibit this characteristic, except in the EANN model that
forecasts Mondays. Due to the heuristic nature of the model, this slight
inconsistency is expected. Hence, the novel characteristic of the pro-
posed ensemble framework relates the model’s optimum parameters to
its performance and the corresponding physical interpretation of the
results is still apparent.

The Bagging ensemble produces inferior results in terms of Bias and
rBias criteria, even when compared to the SANN models. EANN also
outperforms BANN in terms of Bias in all the days, with 5 out of 7 days
when compared to SANN models. The EANN clearly outperforms SANN
and BANN in rBias and provides the biggest improvement in this error
criterion. The significant improvement by EANN in rBias is also a po-
sitive feedback on the proposed ensemble since most of the relevant
studies in the literature use similar criterion to evaluate the model
performance. To this extent, the poor BANN performance in the Bias
and rBias criteria exemplifies one of the main limitations discussed

Table 4
Ensemble parameters selection.

Day me (%) mc (%)

Saturday 70 20
Sunday 70 20
Monday 50 10
Tuesday 50 20
Wednesday 50 10
Thursday 70 20
Friday 70 30

Fig. 6. Validation plots for each ensemble model.
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regarding the common ensemble learners, which is partly due to their
relatively simple ensemble integration methods; the utilization of the
diverse ensemble model with the robust linear combiner significantly
reduces the Bias errors among all the EANNs. This result confirms the
added benefit from utilizing the proposed ensemble learning frame-
work. In the current study, the bias in estimates is expected to persist
due to the various challenges inherent in forecasting the individual
household energy consumption time series, as discussed in Section 2.
Hence, the robust combiner of the proposed ensemble framework
overcomes such challenges as opposed to the conventional ensemble
models.

Furthermore, the overall performance of the three models is shown
at the end of Table 5. This performance is computed when the forecasts
coming from all the day-wise models are combined in one dataset and
then compared to their corresponding true observations. The overall
performance by the EANNs is the best among all the five error mea-
surement criteria, where the relative improvement of EANN (compared
with SANN and BANN) is 6% to 28% in RMSE, 42% to 49 in Bias, 7% to
32% in rRMSE, 23% to 26% in rBias, and 5% to 21% in MAPE. The
overall performance results further verify the significant improvement
which the proposed ensemble learning framework can bring to short-
term forecasting of individual household energy consumption.

It is worth noting that seasonality, whether in climate patterns or in
energy consumption patterns throughout the year, is not expected to be
a significant contributor to the uncertainty in short-term energy fore-
casts, as described in Section 4. However, the representativeness of the
dataset may have implications on the heuristic performance. On one
hand, this may relieve the learner from comprehending various con-
sumption patterns throughout the year and fit more concisely on what
the cluster pertains. On the other hand, in the case of limited dataset,
such hierarchy or clustering approach to data may result in inferior
performance due to the threshold of available intelligence in each
cluster [27,34]. Investigating the effects of various feature selection and
preprocessing frameworks are usually considered a whole research
endeavour, at least in the pure literature (machine learning literature).

Hence, the scope of the current paper is defined to utilize useful fea-
tures which are in-line with the expected behavior of the household
energy consumption for each day of the week. Furthermore, pre-
processing the dataset to comprise subsets with pre-informed con-
sumption patterns may influence the proposed ensemble performance,
and all other models, in a similar fashion. Consequently, the proposed
ensemble model as well as the other models are expected to yield
performances relative to that in the current work, in the case of utilizing
different feature selection and preprocessing approaches.

At this point, the expected performance of the proposed model has
been investigated over the five considered error measurement criteria;
to provide a complete assessment on the stability of the proposed en-
semble, the variation of the proposed model’s performance criteria from
their expected values should also be investigated. Due to the nature of
the forecasting problem, the stability of the relative performance
measurement criteria is considered, rRMSE, rBias, and MAPE criteria.
Moreover, the variation results can be observed in Fig. 7, where the
latter depicts the Box Plots for the three relative error measurements. In
all the days, the performance variation of EANN models is significantly
less than the performance variations in SANN and BANN models.
Hence, the EANN models’ generalization ability is significantly more
stable than the common single and ensemble machine learning tech-
niques. Also, the confidence in the limited variability of EANN models’
relative performance is better than the other models. This is shown by
lower and higher bounds of the EANN Box Plots which are better than
those in SANN and BANN (more concise).

To further explain the benefit from utilizing the proposed ensemble
learning framework, a final result is also presented. In Fig. 8, a density
scatterplot of the estimates coming from the compared models is pre-
sented. The underestimation of higher MDEC values and the over-
estimation in lower MDEC values, manifested in BANN models, are
significantly reduced by the EANN models. In other words, although
each day of the week is forecasted using a different EANN model,
pooling of forecasts does not induce unwanted deviations, that may
occur due to the day-wise forecasting approach. A close inspection of

Table 5
Average performance results of the Jackknife validation trials for each SANN, BANN and EANN models.

Test Day Model RMSE (Wh) Bias (Wh) rRMSE (%) rBias (%) MAPE (%)

Saturday SANN 390.7422 8.1163 30.6702 −4.0987 19.0982
BANN 309.6022 4.0803 22.9882 −4.2767 16.2373
EANN 296.3437 3.7044 22.3428 −3.4599 15.9396

Sunday SANN 380.9260 1.6561 30.5878 −3.7723 18.7060
BANN 297.5115 4.4247 21.3936 −3.7635 15.4263
EANN 281.9481 3.2886 19.0598 −2.4197 14.2594

Monday SANN 418.5348 1.8121 34.1406 −4.4712 19.8222
BANN 319.9523 3.4112 24.8202 −4.7937 15.4446
EANN 292.5657 −0.0124 23.7829 −3.4176 15.1994

Tuesday SANN 401.0588 4.6344 33.9507 −4.2647 19.7371
BANN 300.8767 4.1910 24.7131 −4.6775 16.8281
EANN 282.1321 1.8963 23.1508 −3.8161 15.3191

Wednesday SANN 350.6744 3.2774 26.4935 −2.6130 15.4042
BANN 252.1614 4.8091 17.6680 −2.7473 12.1256
EANN 237.9751 2.3352 16.0088 −1.7264 11.3952

Thursday SANN 344.2010 4.6539 27.0493 −3.8769 16.6223
BANN 252.0307 2.3348 19.4401 −3.6889 13.7674
EANN 237.5945 0.9854 17.6581 −2.5564 13.1932

Friday SANN 410.5117 −0.1925 30.8874 −4.4366 18.6940
BANN 313.4764 3.9016 23.2305 −4.5422 16.2791
EANN 303.1284 1.7418 21.8580 −3.7033 15.7323

Overall SANN 386.1477 3.4225 30.6643 −3.9333 18.2977
BANN 293.4122 3.8790 22.1767 −4.0700 15.1583
EANN 277.0966 1.9913 20.7362 −3.0142 14.4340

Bold numbers indicate best results.
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each density scatter plot also shows that the EANNs produce forecasts
that are relatively closer to the observations along all the magnitudes of
MDEC, while BANN and SANN forecasts are clearly poor at higher
MDEC observations, beyond 30 KWh. Hence, SANN and BANN are not
able to produce reliable forecasts of higher MDEC events. This is due to
challenges in the energy consumption time series of individual house-
holds as well as the models’ inability to utilize all the available in-
formation from various sub-members’ forecasts (in the case of BANN).
On the other hand, the proposed ensemble’s combiner not only provides

robust weights to integrate the ensemble members’ estimates, but also
uses a bias-correcting term which works properly with the learning
process. The resampling technique as well as the controlled exchange of
random data, to be introduced in the integration stage (manifested in
mc), enable overfitted members to be combined using a regression
technique. As a consequence, diversity, which really defines ensemble
learning, is maintained in the proposed model, and a generalization of
the integration weights is successfully achieved.

a) rRMSE

b) rBias

c)MAPE

Fig. 7. Box plots of Monte Carlo simulation on the models’ generalization ability; (a) rRMSE performance, (b) rBias, and (c) MAPE performance criteria.
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5.3. Computational requirement

Given the current availability of computational resource and power,
the time requirement to create a complex forecasting model is very

competitive to simple forecasting procedures (in addition to the added
benefit of significantly lower errors). Table 6 summarizes the time re-
quirement expectation when utilizing the ensemble models and simple
models in the case study. It can be shown that the computational

Fig. 8. Density scatter plots of the estimated vs. observed MDEC values for all the days from SANN, BANN and EANN models, respectively.

Table 6
Comparison of time requirement for different stages of computations.

Activity Real-life scenario Ensemble Model Simple models

Training/Validation New participant (New
Household)

Single Node-all cases: ∼1.4 h
Single Node-one case: ∼1min
Parallel-all cases: ∼12mins**

Parallel-one case: Seconds**

Seconds up to minutes (depends on the model, feature selection, validation
study utilized, etc.)

Forecasting Day-Ahead Operation by a given SEMP* Less than a second Less than a second
Updating Models Operation by a given SEMP* Single Node: ∼1min

Parallel: Seconds**
Seconds

* SEMP: Smart Energy Management Program: such as a Demand Response program.
** The exact computational time depends on the configuration of the parallel computing environment. In this case, we used local parallelization, 4 cores sharing 24 GB (note: The four

cores used less than 1 GB).
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requirement for a sophisticated model is competitive when compared to
simple models. In a single computing environment, the ensemble model
may take longer than simple methods in the first stage (accounting for
feature selection and model validation); however, if a parallel com-
puting paradigm is utilized for this stage, the time requirement for this
step significantly drops. In addition, from all the presented results, the
household-based forecasting problem is shown to require a more
complex modeling approach to produce reliable forecasts, as the gen-
eralization ability of simple models is very poor.

6. Conclusions

In this paper, a robust ensemble model was proposed to predict day-
ahead MDECs on the household level. The proposed ensemble learning
strategy utilized a two-stage resampling plan, which generated di-
versity-controlled but random resamples that were used to train in-
dividual ANN members. The ensemble members were trained in-joint
with a robust linear combiner containing a bias-correcting term. The
proposed model was compared with single ANN models and Bagging
ensemble. The Jackknife validation results showed that the proposed
ensemble could more adequately generate MDEC estimates. The gen-
eralization ability was also shown to be more stable or less variant than
those of the compared models. In other words, the results also showed
that optimum ensemble required less, but diverse, information to pro-
duce improved prediction performance. Furthermore, the results
showed that the proposed ensemble model produced optimum diversity
information that matched expectations on the dynamics within the case
study in which the model was applied. In this work, the values of the
optimum information-mixture parameters provided information on the
nature of the household energy consumption behavior during each day
of the week. This result allowed validating the ensemble model’s
identity in the proposed learning framework and suggested further
benefit from utilizing the proposed model.

In addition, the proposed ensemble learning framework helped to
improve the reliability of individual household energy consumption
forecasts required for various state-of-the-art applications. From a
system operator point-of-view and considering different smart energy
management programs, having a reliable day-ahead prediction of the
average household consumption provides a better anticipation of the
flexibility which consumers can offer to the system. A daily average of a
single household provides the operator with a proper selection para-
meter when choosing individual consumers to change their behavior
(whether increasing or decreasing their consumption). Even if the
agreement between the two parties is to allow the utility side to directly
control the household loads, consumer satisfaction is a main pillar of
the Demand Response concept. Moreover, future work will extend the
current proposed framework to address day-ahead hourly energy con-
sumption for other operational planning applications.
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